Clustering and Classification methods for Biologists


MMU logo

Discriminant Analysis

LTSN Bioscience logo

Page Outline

 

Search

[ Yahoo! ] options

Iris Data : Discriminant Analysis 3 (PC pedictors)

PCA of the 4 predictors

Total Variance Explained
  Initial Eigenvalues Extraction Sums of Squared Loadings
Component Total % Variance Cumulative % Total % Variance Cumulative %
1 2.918 72.962 72.962 2.918 72.962 72.962
2 0.914 22.851 95.813 0.914 22.851 95.813
3 0.147 3.669 99.482      
4 0.021 .518 100.000      

 

Component Matrix
  Component
1 2
SEPAL_L 0.890 0.361
SEPAL_W -0.460 0.883
PETAL_L 0.992 0.023
PETAL_W 0.965 0.064

 

Scatter of fac2_1 fac1_1 by species

top

Discriminant Analysis using the PCA scores

Summary of Canonical Discriminant Functions

Eigenvalues
Function Eigenvalue % of Variance Cumulative % Canonical
Correlation
1 17.562 99.0 99.0 0.973
2 0.182 1.0 100.0 0.393
Wilks' Lambda
Test of Function(s) Wilks' Lambda Chi-square df Sig.
1 through 2 0.046 452.482 4 0.000
2 0.846 24.536 1 0.000

 

Standardized Canonical Discriminant Function Coefficients

Function
1 2
PC1 1.094 0.034
PC2 -0.474 0.986

 

Structure Matrix

Function
1 2
PC1 0.901 0.434
PC2 -0.031 1.000

 

Functions at Group Centroids

Function
SPECIES 1 2
I.setosa -5.669 0.154
I.versicolor 1.526 -0.577
I.virginica 4.143 0.423

 

Classification Statistics

Classification Results
  Predicted Group Membership Total
    SPECIES I.setosa I.versicolor I.virginica
Original Count I.setosa 50 0 0 50
I.versicolor 0 45 5 50
I.virginica 0 5 45 50
% I.setosa 100.0 .0 .0 100
I.versicolor .0 90.0 10.0 100
I.virginica .0 10.0 90.0 100
Cross-validated Count I.setosa 50 0 0 50
I.versicolor 0 44 6 50
I.virginica 0 5 45 50
% I.setosa 100.0 .0 .0 100
I.versicolor .0 88.0 12.0 100
I.virginica .0 10.0 90.0 100
top